
RenderMan Design Principles N90-20653

Tony Apodaca
Pixar

3240 Kemer Blvd.

San Rafael, CA 94901

Tom Porter

Pixar

3240 Kerner Blvd.

San Rafael, CA 94901

ABSTRACT

The two worlds of interactive graphics and realistic graphics

have remained separate. Fast graphics hardware runs simple

algorithms and generates simple-looking images. Photoreal-

istic image synthesis software runs slowly on large expensive

computers. The time has come for these two branches of com-

puter graphics to merge.

The speed and expense of graphics hardware is no longer the

barrier to the wide acceptance of photorealism. There is

every reason to believe that high quality image synthesis will

become a standard capability of every graphics machine,from

superworkstation to personal computer. The significant bar-

tier has been the lack of a common language, an agreed-upon

set of terms and conditions, for 3-D modeling systems to talk
to 3-D rendering systems for computing an accurate rendition

of that scene.

Pixar has introduced RenderMan to serve as that common

language. This paper examines RenderMan, specifically the

extensibility it offers in shading calculations.

NASA has been at the forefront of developments in computer graphics.

One area in particular has been the quest for realism in synthetic image

generation. Voyager animations done at JPL a decade ago captivated

many with the notion that the process of scientific discovery and the popu-

lar understanding of that process could both benefit from visually accurate

computer generated imagery.

Computers have sped up since those animations were made. Tools for

modeling and controlling the animation have also improved. Yet too often,

the ability to produce complex and accurate renditions is relegated to spe-

cialized labs. The challenge that we face is in bringing this technology to

the desktop, running it on every graphics platform, linked across the stan-
dard networks, fed from the common databases.

The goal is to unify the often divergent methodologies used in the

computer-aided-design of a 3-D object, the analysis of that object during

simulation, and the accurate representation of the object.

What isRenderMan?

RenderMan is an interface between 3-D modeling systems and photoreal-

istic rendering systems. Modeling is the process of describing objects to a

computer. We use modeling here to refer to all aspects of describing a

scene, including its dynamics. Rendering is the process of generating an

image of the scene from a given viewpoint. RenderMan is an interface

proposal which will permit a large variety of geometric modelers to talk to

a large variety of renderers with a straightforward, common format.

The central problem in making such a proposal is to accommodate the

needs of advanced rendering in a clean way, while allowing standard CAD

databases to feed the interface. Only then can photorealistic image syn-

thesis be brought under the same wing, integrated into the same computing

environment as other aspects of CAD and simulation.

Shape and Shading

An overriding principle in the design of RenderMan used to solve this

problem is a recognition that an interface proposal must distinguish clearly

between shape and shading, between the geometry of the scene and the

visual characteristics of the geometry. The visual complexity of real world

imagery is not found in the general shape of objects, but rather in the tex-

tures and materials and lighting and dynamics. In fact, the graphics com-

munity already has sufficient CAD tools to specify the shapes of things.

We lack the tools to describe visual qualities, such as atmospheric condi-

tions, reflectivity of materials, and characteristics of light sources.

A second principle is that shading computations need to he far more gen-

eral than the Gouraud and Phong interpolation set forth in the textbooks.

The world is not all plastic. We need rendering systems that can wrap an

atmospheric texture around a spherical planet, that can compute a noise

function to simulate the bumpiness of a surface, that can handle surface

properties other than color, perhaps to compute renditions outside the visi-

ble spectrum.

The RonderMan interface is a specification for approximately 100 sub-

routines with which a modeler can completely describe all of the informa-

tion that a renderer might need to generate an image of a scene. It pro-

vides entry points for geometric information, transformation hierarchies,

color and material property information, camera parameters and output

image characteristics.

The RenderMan interface supports a rich variety of geometric primitives.

For example, convex polygons, concave polygons (with and without

holes), polyhedral models, and a large number of quadric surfaces are sup-

ported. RenderMan includes a very comprehensive bicubic patch primi-

tive, specified with an arbitrary basis matrix. RenderMan also supports

non-uniform rational B-spline surfaces (NURBS).

Supportforprimitivessuchasthese guarantees that most standard CAD

packages can feed the RenderMan interface quite easily. There are two

significant capabilities of the interface in extending the common notions

about geometry:

First, RenderMan supports procedural primitives. One of the biggest

problems in modeling natural phenomena (such as mountains, plants, fhe,

etc.) is that the geometric complexity is enormous. This problem is usually

solved by writing programs which generate all of the tiny detail, rather

than model it by hand. However, it can still be very expensive for the

modeler to generate a huge complex model and then pass it to the renderer,

particularly if the modeler doesn't know how much of it the renderer really

needs. RenderMan's procedural primitives permit the user to give the

renderer a pointer to a subroutine which will expand simple objects into

more complicated ones, such as convening a triangle into a fractal moun-

tain or a sphere into a particle system explosion. Using procedural primi-
fives, the modeler can download a very complex model such as a fractal

into the renderer in a carefully controlled way, so that only the required

amount of detail is sent through the interface.

Secondly, RenderMan has a very general interface for specification of the

arbitrary parameters on a surface. This permits the user to specify not sim-

ply the position and color, but also the surface normals and texture map
coordinates on a per vertex basis. In addition, the vertex structure can

actually be extended by the user at run-time, to include arbitrary informa-

tion of his choosing such as temperature or stress or density or any other

values that might be interesting to his particular application. These param-
eters can then be used to control the shading calculation.

Shading Language

Most software renderers have a subroutine which determines the color of

the surface of an object. Typically, it will implement a single mathemati-

cal equation which uses a simple model of the reflection of light in order to

calculate the contributions of the light sources and texture maps upon the

surface color. The equation often has a lot of parameters (5 to 20, depend-

ing on the renderer) which the user tweaks to control the appearance of

different kinds of materials (plastic, metal, chalk, etc.).

Very often, however, you want the surface to have some characteristic

which you can't achieve with the fixed equation, such as the use of a tex-

ture map to modify some shading parameter. If you are fortunate enough

to have the source code, you can add your function and recompile. If not,
you are out of luck.

RenderMan changes this model, by providing the facility of the shading

language, a C-like programming language which has new functions and

data types that are specifically designed for the purpose of calculating
colors based on geometric information. Programs which users write in the

shading language are typically small (10 to 20 lines), and are loaded into

the renderer at run-time when they are requested by some part of the scene

geometry. These programs then replace the built-in shading equations.

Users can use this language to customize the shading on a per-object basis.

This new freedom gives the user the power to model the appearance of
objects as carefully as he models their shape.

The shading language supports three basic data types, the float, the

point and the color, point and color are abstractdam types

which are actually vectors of floating point values. The standard C arith-

metic operators (*, +, /, etc.) work on these data types. In addition,

there are some new operators for vector dot and cross product. The fami-

liar C conditional and looping constructs are available (except switch),

as are subroutine definitions and calls. There is a rich library of mathemat-

ical functions, as well as a library of functions which implement common

shading operations such as normalizing vectors, transforming points

between coordinate systems, calculating diffuse and specular lighting,

interpolating colors, splining and calculating pseudorandom numbers.

RenderMan actually permits the user to define up to four separate shading
language programs which provide different material characteristic infor-

mation about each object: a surface shader, which determines what color

we see when light reflects off the surface; a displacement shader, which

can move the surface small amounts to add dents or fillets which are too

small or too complex to model geometrically; a light shader, which

describes how luminous objects emit light; and a volume shader, which

describes how light is attenuated as it passes through the interior of a

translucent object. This may seem a bit complicated, but it actually quite a

straightforward way to think about the material properties of objects, par-
ticularly once you've seen them in action.

Shaders

The renderer calls the appropriate shading language program (shader)

every time a light intensity, surface color, etc., is required. When a shader

is called, it has available to it a large number of global variables which are

provided by the renderer. These variables include all of the geometric

information that the renderer knows about the surface being shaded, such

as the position P, the surface normal N, the color Cs and opacity Os

that the user specified, the texture coordinates s, t and others. The vari-

ables that the user applied to the vertices of his primitives are also avail-

able inside the shaders. Each type of shader accomplishes its specified

task by calculating and modifying a specific part of this global state. For

example, a surface shader is responsible for calculating and setting Ci,

the color that the eye sees. A light shader is responsible for setting Cl,
the light color.

Listing I shows an example of a simple surface shader. This shader calcu-

lates the reflectivity of a metallic object, using a simple equation. It makes

use of the standard library functions ambient, diffuse and specu-

la r to determine the amount of light arriving on the surface from the light

sources. These functions implement three customary equations based on

the direction and strength of the incoming light. If those functions had not

been appropriate, the surface shader has access to the lights and could have
calculated whatever values it pleased from them. The shader then calcu-

lates a weighted average of the incoming light intensities and multiplies by

the color of the object. Notice also that the shading language took care of

the multiplication of float values by color vectors automatically, freeing

the user from having to write the ugly loops which would have been
present in most other languages.

The type of the shader (in this case surface) indicates its intended

function. Parameters to the shader are specified using a syntax similar to

ANSI C. This shader demonstrates another other unique feature of the

shading language, the presence of default values in the parameter list.

When a modeler requests this shader, it specifies the parameters it wishes

to override by name. Any parameter not mentioned is left with the default
value.

surface metallic (float Ka = .4,

Kd = .4, Ks = .6,

roughness = .25;)

{

N = faceforward(normalize(N));

Ci = Cs * (Ka * ambient() +

Kd * diffuse(N) +

Ks * specular(N,

-normalize(I), roughness));
}

Listing 1. A simple shader which simulates the

reflection of light off of metallic objects.

10

Listing2demonstratesadisplacementshader.Thepurposeofadisplace-
mentshaderistomovethepositionofthesurfacearoundalittlebitto
simulatetinyfillets,dentsandotherminorsurfaceperturbations.This
greadyaddstothevisualinterestofanobject,andmakesit lookmuch
morerealistic.Thisparticularshadercalculatesafractaldentednessusing
severaliterationsofnoise, a function which produces a semirandom value

which changes slowly over the surface of the object (using a purely ran-

dom value would distort the surface beyond recognition, since adjacent

points would have no relationship to each other). Getting the same effect

by trying to model the intricate surface dents would be extremely difficult.

displacement dent (float scale = 1.0;)

l

float size = 1.0, displace = 0.0;

for (i=0; i<6; i+=l.0) {

/* Calculate a simple

fractal I/f noise function */

displace += abs(.5 - noise(P * size))

/ size;

size *= 2.0;

}

/* Displace the surface and

recalculate surface normals */

P += N * pow(displace, 3.0) * scale;

N = calculatenormals(P);

}

Listing 2. Shader which simulates dents

by moving the surface a small amount.

This adds visual complexity which is very

difficult to model convincingly using

standard geometric modeling techniques.

Sensor Simulations

RenderMan can generate output much more general that the simple

pinhole camera/RGB images provided by current systems. RenderMan

can, for example, compute color in multichannel spectral spaces. Landsat

data can be used as input texture maps to control multtple surface parame-

ters mapped onto a planet surface. Shading language procedures can be

written to use surface parameters such as temperature; in this way, mul-

tichannel sensor image acquisition can be simulated.

RenderMan allows the user to specify other parameters of the simulated

camera, in order to provide information to renderers which support

advanced rendering features. For example, the user can set the shutter

time as well as the focal length, focal distance and f-stop of the camera, to

simulate motion blur and depth-of-field. RenderMan allows the user to

specify the positions, shapes and colors of the objects at multiple times

during the shutter interval, so that sophisticated renderers that can simulate
motion blur will know how the objects are moving.

High quality rendering requires a lot of attention to the sampling and filter-

ing which is performed on the output pixels, in order to avoid aliasing.

RenderMan gives the user independent control over the number of shad-

ing samples per pixel and the number of hidden surface samples per pixel,

as well as the size and shape of the pixel filter function. In addition to the

standard display parameters of output image name and device type and

image resolution, RenderMan supports gamma correction and exposure

control. These functions compensate for a monitor's phosphors' tendency

to glow with exponentially increasing brightness as voltage increases

linearly. It also contains the new concept of an imager shader, another

shading language program which permits the user to implement various

color manipulations on final pixels just before they are put into the frame-

buffer or file.

Conclusion

The RenderMan interface is a powerful interface between 3-D modeling

systems and photorealistic rendering systems. It is designed to bring the

highest quality in image synthesis into widespread use. Modem CAD

modeling tools can feed RenderMan from their standard database of

geometry. RenderMan provides simple built-in shading language pro-

cedures to provide for a range of standard material properties.

RenderMan provides a shading language for far-reaching extensibility in

user specification of specific visual characteristics of the scene. The inter-

face exposes a great deal of control over the shading process; modelers are

encouraged to offer user-defined shading language procedures for render-

ers to execute. By partitioning the modeler/renderer interface in this way,

high-quality rendering can be made accessible to a vast array of modeling

systems and CAD databases.

RenderMan is the only graphics interface proposal to deal with issues in

high-quality synthetic image generation such as antialiasing, texture map-

ping, motion-blur, shadows, spectral color models and programmable

shading languages. These advanced features are not available on most of

the rendering software and hardware that is currently available. As such,

RenderMan represents a goal for sophisticated new graphics hardware

and rendering software to shoot for.

Users of graphics workstations and personal computers will be the biggest

winners, as photorealism becomes inexpensive, commonplace and compa-

tible across a wide range of platforms.

Copies of The RenderMan Interface, Version 3.0 are available from

Pixar, 3240 Kerner Blvd., San Rafael, CA, 94901. Please enclose $15 to

defer the cost of printing and mailing.

Further Reading

Foley, James D., and Andries VanDam, Fundamentals oflnteractive Com-

puter Graphics, Addison-Wesley, Reading, MA, 1982.

Hall, Roy, Illumination and Color in Computer Generated Imagery,

Springer-Verlag, New York, 1988.

Joy, Kenneth I., et al, (ed.) Image Synthesis, Computer Society Press,

Washington, DC, 1988.

Pixar, The RenderMan Interface, Version 3.0, May 1988.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-

Hill, New York, 1985.

11

